Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: covidwho-1528616

ABSTRACT

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Subject(s)
Antiviral Agents , Pyrimidine Nucleosides , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , COVID-19/virology , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Female , Humans , Male , Mice , Pyrimidine Nucleosides/pharmacokinetics , Pyrimidine Nucleosides/pharmacology , Pyrimidine Nucleosides/toxicity , Vero Cells
2.
Viruses ; 13(5)2021 05 12.
Article in English | MEDLINE | ID: covidwho-1227068

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expanded, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.


Subject(s)
Antibodies, Neutralizing/analysis , COVID-19/immunology , Neutralization Tests/methods , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/metabolism , COVID-19/therapy , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunization, Passive , Immunoglobulin G/blood , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL